Ensemble : Scenarios ensembling for communication and performance analysis
Publication
NetSI authors
Research area
Resources
Abstract
Throughout the COVID-19 pandemic, scenario modeling played a crucial role in shaping the decision-making process of public health policies. Unlike forecasts, scenario projections rely on specific assumptions about the future that consider different plausible states-of-the-world that may or may not be realized and that depend on policy interventions, unpredictable changes in the epidemic outlook, etc. As a consequence, long-term scenario projections require different evaluation criteria than the ones used for traditional short-term epidemic forecasts. Here, we propose a novel ensemble procedure for assessing pandemic scenario projections using the results of the Scenario Modeling Hub (SMH) for COVID-19 in the United States (US). By defining a “scenario ensemble” for each model and the ensemble of models, termed “Ensemble2”, we provide a synthesis of potential epidemic outcomes, which we use to assess projections’ performance, bypassing the identification of the most plausible scenario. We find that overall the Ensemble2 models are well-calibrated and provide better performance than the scenario ensemble of individual models. The ensemble procedure accounts for the full range of plausible outcomes and highlights the importance of scenario design and effective communication. The scenario ensembling approach can be extended to any scenario design strategy, with potential refinements including weighting scenarios and allowing the ensembling process to evolve over time.