Unveiling individual and collective temporal patterns in the tanker shipping network

Kevin Teo, Naomi Arnold, Andrew Hone, Michael Coulon, Martin Ireland, Mauricio Santillana, István Zoltán Kiss

Abstract

The global shipping network, which moves over 80% of the world's goods, is not only a vital backbone of the global economy but also one of the most polluting industries. Studying how this network operates is crucial for improving its efficiency and sustainability. While the transport of solid goods like packaged products and raw materials has been extensively researched, far less is known about the competitive trade of crude oil and petroleum, despite these commodities accounting for nearly 30% of the market. Using 4 years of high-resolution data on oil tanker movements, we employ sequential motif mining and dynamic mode decomposition to uncover global spatio-temporal patterns in the movement of individual ships. Across all ship classes, we demonstrate that maximizing the proportion of time ships spend carrying cargo -- a metric of efficiency -- is achieved through strategic diversification of routes and the effective use of intra-regional ports for trips without cargo. Moreover, we uncover a globally stable travel structure in the fleet, with pronounced seasonal variations linked to annual and semi-annual regional climate patterns and economic cycles. Our findings highlight the importance of integrating high-resolution data with innovative analysis methods not only to improve our understanding of the underlying dynamics of shipping patterns, but to design and evaluate strategies aimed at reducing their environmental impact.

Related publications